Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Winnebago Front-Wheel Drive Motor Home Design and Assembly

1984-11-01
841685
The development of this vehicle is described from concept, through design and assembly. The design intent of this unique vehicle was high fuel efficiency, good ride and handling characteristics, and a high degree of passenger safety at a competitive cost. A combination of some of the latest in automotive and motor home construction technology was used to meet the desired goals.
Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

2013-04-08
2013-01-0580
The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Wind Tunnel Concepts for Testing Heavy Trucks

2016-09-27
2016-01-8144
The trucking industry is being encouraged by environmental and cost factors to improve fuel efficiency. One factor that affects fuel efficiency is the aerodynamic design of the vehicles; that is, the vehicles with lower aerodynamic drag will get better mileage, reducing carbon emissions and reducing costs through lower fuel usage. A significant tool towards developing vehicles with lower drag is the wind tunnel. The automobile industry has made great improvements in fuel efficiency by using wind tunnels to determine the best designs to achieve lower drag. Those wind tunnels are not optimum for testing the larger, longer heavy trucks since the wind tunnels are smaller than needed. The estimated costs for a heavy truck wind tunnel based on automotive wind tunnel technology are quite high. A potential nozzle concept to reduce wind tunnel cost and several other new possible approaches to lower wind tunnel costs are presented.
Journal Article

Willans Line-Based Equivalent Consumption Minimization Strategy for Charge-Sustaining Hybrid Electric Vehicle

2021-09-09
Abstract Energy management strategies for charge-sustaining hybrid electric vehicles reduce fuel consumption and maintain battery pack state of charge while meeting driver output power demand. The equivalent consumption minimization strategy is a real-time energy management strategy that makes use of an equivalence ratio to quantify electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines the hybrid electric vehicle mode of operation and influences the ability of the energy management strategy to reduce fuel consumption as well as maintain the battery pack state of charge. The equivalent consumption minimization strategy in this article uses three Willans line models, which have an associated marginal efficiency and constant offset, to model the performance in the hybrid electric vehicle controller.
Journal Article

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-03-29
2022-01-0531
A new and unique electric vehicle powertrain model based on bidirectional power flow for propel and regenerative brake power capture is developed and applied to production battery electric vehicles. The model is based on a Willans line model to relate power input from the battery and power output to tractive effort, with one set of parameters (marginal efficiency and an offset loss) for the bidirectional power flow through the powertrain. An electric accessory load is included for the propel, brake and idle phases of vehicle operation. In addition, regenerative brake energy capture is limited with a regen fraction (where the balance goes to friction braking), a power limit, and a low-speed cutoff limit. The purpose of the model is to predict energy consumption and range using only tractive effort based on EPA published road load and test mass (test car list data) and vehicle powertrain parameters derived from EPA reported unadjusted UDDS and HWFET energy consumption.
Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

Wide Temperature Range Charging System Controlled by Battery Acceptance

1968-02-01
680393
The difficulties encountered in charging batteries over wide temperature ranges have long been recognized. This paper discusses the concept of charge acceptance of batteries and its relationship to the gas pressure developed within sealed batteries. A newly developed system of pressure control charging is described together with its performance over wide temperature ranges. This system completely prevents overcharging at high temperatures and assures full battery capacity down to extremely low temperatures.
Technical Paper

Why Some Passenger Car Motor Oils Are No Longer Suitable for Motorcycles: Gear Pitting Issues

2005-10-12
2005-32-0088
The new American Petroleum Institute (API) categories for passenger car motor oils have focused on improving fuel economy and reducing emissions. This has resulted in more fuel efficient oils being developed by lowering the viscometrics and by adding friction modifiers. The emissions reductions have resulted from lowering the percent phosphorus (%P) in the engine oils because phosphorus has been found to poison the catalyst in the catalytic converter. When friction modifiers were introduced, researchers from four Japanese motorcycle manufacturers published the results of their studies (SAE 961217) which indicated that low friction oil can cause too much slippage in starter motor clutches, one-way limited slip clutches, and wet multi-plate clutches. In that same study they reported that engine manufacturers use 10W-30 grade oil to develop new engine technology, and gear pitting was observed with oils of viscosity grades lower than 10W-30 in all four manufacturers' motorcycle engines.
Technical Paper

Why Not a New Engine ?

1980-11-01
801428
Leading contenders in the search for a superior alternative powerplant for light-duty automotive use include the steam and Stirling engines, the gas turbine, and the diesel. In this paper the status of each of those alternative engines is reviewed and i its prognosis considered. The steam engine is unsuitable because of poor fuel economy. Obstacles blocking acceptance of the Stirling and gas turbine engines are sufficient so that even if they are surmountable, significant-use in light-duty vehicles is unlikely before the 1990s. The light-duty diesel is here today but faces some difficult regulatory hurdles in the near future.
Event

Why Attend the Urban Ground Mobility Digital Summit

2024-04-29
If you’re working to balance the implementation of today’s urban ground mobility (UGM) vehicles with tomorrow’s biggest challenges and opportunities, then you belong at the premier of SAE’s Urban Ground Mobility Digital Summit.
Event

Why Attend the Urban Ground Mobility Digital Summit

2024-04-29
If you’re working to balance the implementation of today’s urban ground mobility (UGM) vehicles with tomorrow’s biggest challenges and opportunities, then you belong at the premier of SAE’s Urban Ground Mobility Digital Summit.

Why Attend - Evolving to MedDev 2022

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
X